
ECE 174 Homework # 5 – Due Thursday, December 7, 2017

Comments and Reading

This is the last homework assignment. Although it is due on Thursday of the 10th week of the
quarter (i.e., on the very last lecture of the quarter), you should start look at these problems
immediately as understanding them is critical to performing the second computer assignment,
which is due on the very same day.

Carefully review and study the class lectures (and the midterm question and solution) on
Maximum Likelihood Estimation (MLE) under the linear gaussian assumption. This material will
help in solving problem 1 below.

Finally, read the lecture supplement on nonlinear least-squares and generalized gradient de-
scent algorithms located on the class website. This information is critical for understanding the
algorithms used in the second Matlab computer assignment.

2nd Matlab Computer Assignment - GPS Positioning - Due Thursday, 12/7/2017

The second computer assignment on GPS positioning is also due Thursday, December 7, 2017. You
should immediately begin this assignment.

Your report will be compared against descriptive websites and other articles
on the GPS algorithm available on the internet and in the literature, as well
as against other current and past project reports. Any copying from these
banned sources into your project report will be considered an Academic
Integrity violation and dealt with forcefully.

Homework

1. Maximum Likelihood Estimation for the Gaussian Linear Model.1 Suppose we
obtain two different independent noisy measurements of an unknown quantity x using two
different measurement devices,

yk = x+ nk , k = 1, 2 ,

where each measurement device k, k = 1, 2, has been calibrated and is known to have a
measurement error, nk, which is zero–mean and gaussian with a known variance σ2k. The
variance of the measurement device k, σ2k, is a measure of its its uncertainty and it is assumed
that σ21 6= σ22. Note, then, that we are measuring the quantity x using two devices of differing
precision.2

Let y = (y1, y2)
T denote the vector of observations. The conditional probability of y for

measured value of the unknown x, px(y) = p(y;x), is known as the likelihood of x given the

1You’ve already encountered this problem. It is important enough for you to do it again.
2Precision is the reciprocal of the variance.
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measurement y, or simply as the likelihood function or likelihood. Under the independent–
measurements assumption the likelihood can be written as the product of marginal probabil-
ities as

p(y;x) = p(y1;x) p(y2;x),

where under our noise model,

p(yk;x) =
e
− 1

2

(
yk−x
σk

)2

√
2π σk

, k = 1, 2 .

The maximum likelihood estimate (MLE), x̂MLE, of the unknown quantity x is determined as,

x̂MLE = arg max
x

p(y |x) = arg min
x
{− ln p(y |x)} .

(a) Show that the MLE, x̂MLE, is the solution to a weighted least–squares problem,

x̂MLE = arg min
x
‖y −Ax‖2W .

Give the quantities A, W , A∗, and A+, and determine the MLE, x̂MLE.

(b) (i) What is the solution in the limit that σ21 → 0 (i.e., when device k = 1 is perfectly
precise and has no measurement error). (iii) What is the solution in the limit that
σ21 → ∞ (i.e., when device k = 1 has zero precision). (iii) Explain why these results
make sense.

(c) Suppose that σ21 = σ22 = σ2. (This case could arise if the two measurements are made by
the same measurement device.) Show that in this case the MLE is found as the solution
to a regular (i.e., unweighted) least-squares problem and give the solution, x̂MLE. Does
this solution seem reasonable?

2. Consistent Estimation in the Gaussian Linear Model. Suppose that

yi = αti + ni for i = 1, · · · ,m ,

where ni ∼ N(0, σ2) are iid.

(a) Find the least–squares estimate (which here is equal to the maximum likelihood esti-
mate), α̂(m), obtained from the measurements (yi, ti), i = 1, · · · ,m.

(b) Show that α̂(m) is unbiased, E {α̂(m)} = α.

(c) Define the estimation error α̃(m) = α̂(m) − α and find the variance, Var {α̃(m)}. As-
suming that

m∑
i=1

t2i →∞ as m→∞ ,

show that
Var {α̃(m)} → 0 as m→∞ .

This shows that
lim

m→∞
α̂(m) = α

in the mean–square sense. An estimator that asymptotically converges to the unknown
parameter is said to be consistent.
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3. Vocabulary.

Define the following: Regularized Least Squares; Maximum Likelihood Estimator; Multivari-
ate Taylor Series Expansion; Gradient Descent Algorithm; Gauss-Newton Algorithm; Newton
Algorithm; Generalized Gradient Descent Algorithm; Method of Lagrange Multipliers. (It is
enough to paraphrase the definitions given in the lecture supplements.)

4. Scalar Nonlinear Inverse Problem – Theory.

Using nonlinear least-squares, we wish to solve the nonlinear scalar inverse problem,

y = h(x)

where both x and y are real and one–dimensional (scalar). Derive the following algorithms
from first principles and show that each of them is a special case of generalized gradient
descent (expressly show Qj for each of the algorithms).

(a) Gradient Descent Algorithm.

(b) Gauss–Newton Algorithm (from iterative re-linearization of y = h(x))

(c) Newton Algorithm (from iterative quadratic approximation of the least-squares loss func-
tion).

5. Scalar Nonlinear Inverse Problem – Implementation.

Now use each of the three algorithms derived in the previous problem to find the cube root
of an arbitrary real number. Code your algorithms in Matlab and use the algorithms to find
the cube root of 1,000π using step sizes of 1.0; 0.5; and 0.1, and initial conditions of 3,000;
100, and 0.
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